Friday, September 23, 2011

4.16

· 4.16 understand the energy transfers involved in generating electricity using:
· wind
· water
· geothermal resources
· solar heating systems
· solar cells
· fossil fuels
· nuclear power


>

>


>

Inserted from: >
[cid:image001.png@01CC7867.D58B1BD0]
[cid:image002.png@01CC7867.D58B1BD0]
[cid:image003.png@01CC7867.D58B1BD0]
[cid:image004.png@01CC7867.D58B1BD0]
[cid:image005.png@01CC7867.D58B1BD0]
[cid:image006.png@01CC7867.D58B1BD0]
[cid:image007.png@01CC7867.D58B1BD0]
[cid:image008.png@01CC7867.D58B1BD0]
[cid:image009.png@01CC7867.D58B1BD0]
[cid:image010.png@01CC7867.D58B1BD0]
[cid:image011.png@01CC7867.D58B1BD0]
[cid:image012.png@01CC7867.D58B1BD0]

wind energy story.swf Download this file

Teacher Presentation.ppt Download this file

Srinakarin Hydro Dam, Kanchanaburi.avi Watch on Posterous

4.17 Answers

>

Inserted from: >
[cid:image001.png@01CC786A.1E85E660]
[cid:image002.png@01CC786A.1E85E660]

ADs and DISADs of ENERGY SOURCES-answers.docx Download this file

Starter for 4.16

<<DragnDropEnergy.swf>>

DragnDropEnergy.swf Download this file

4.15

·         
4.15 use the relationship between power, work done (energy transferred) and time taken:

          power = work done            P = Wd

                       time taken                    t

P = Wd / t
P = E / t

P = Power (Watts, W)
Wd = Work Done (Joules, J)
E = Energy Transferred (Joules, J)
t = Time (s)

4.15

·         
4.15 use the relationship between power, work done (energy transferred) and time taken:

          power = work done            P = Wd

                       time taken                    t

P = Wd / t
P = E / t

P = Power (Watts, W)
Wd = Work Done (Joules, J)
E = Energy Transferred (Joules, J)
t = Time (s)

4.15

·         
4.15 use the relationship between power, work done (energy transferred) and time taken:

          power = work done            P = Wd

                       time taken                    t

P = Wd / t
P = E / t

P = Power (Watts, W)
Wd = Work Done (Joules, J)
E = Energy Transferred (Joules, J)
t = Time (s)

4.14

4.14 describe power as the rate of transfer of energy or the rate of doing work

"Rate" just means "divided by time" (see Entrance Activity)

So

Power = Energy / Time

or

Power = Work done / Time

Tuesday, September 20, 2011

Power questions

PFY, p. 120
Image001
f) Power is the rate of doing work.
Power (in watt) = work done (in joule)/ time (in seconds) 
g) 1 Watt is a rate of working of one joule per second.

Image002
13. P = E/t
P = 1000/5
P = 200 W
14. Wd = F x d
Wd = 300 x 2
Wd = 600 J
P = Wd/t
P = 600/ 3
P = 100 W
15. Wd = F x d
Wd = 3000 x 10
Wd = 30,000 J
P = Wd/t
P = 30,000/ 4
P = 7500 W or 7.5 kW

Wednesday, September 14, 2011

CoE questions



PFY p.121
Image001

a) Weight = mg
= 50x10
= 500 N
b) GPE = mgh
= 500x4
= 2,000 J
c) Total energy at start = Total energy at end
= 2,000 J 

Collins, p.91
Image002
a) GPE = mgh
= 35x10x30
= 10,500 J
b) Energy at start = Energy at end
KE = (1/2)mv^2
10500 = (1/2)x35xv^2
600 = v^2
v = 10√6 = 24.5 m/s
c) Because the friction force causes the sledge to slow down, therefore the velocity is lesser than what we calculated, as well as the air resistance. 


CoE questions

PFY p.121
Image001

a) Weight = mg
= 50x10
= 500 N
b) GPE = mgh
= 500x4
= 2,000 J
c) Total energy at start = Total energy at end
= 2,000 J 

Collins, p.91
Image002
a) GPE = mgh
= 35x10x30
= 10,500 J
b) Energy at start = Energy at end
KE = (1/2)mv^2
10500 = (1/2)x35xv^2
600 = v^2
v = 10√6 = 24.5 m/s
c) Because the friction force causes the sledge to slow down, therefore the velocity is lesser than what we calculated, as well as the air resistance. 


4.13

·         
4.13 understand how conservation of energy produces a link between gravitational potential energy, kinetic energy and work
<<CoE.ppt>>

Image001

Image002

Image003

Image004

Wednesday, September 7, 2011

4.12


4.12
10 June 2011
11:52
·         
4.12 recall and use the relationship:

                 kinetic energy = ½ × mass × speed2

                                 KE = ½ × m × v2

<<KE formula.ppt>>

Image001

Image002

Image003

Image004

KE formula.ppt Download this file

4.12


4.12
10 June 2011
11:52
·         
4.12 recall and use the relationship:

                 kinetic energy = ½ × mass × speed2

                                 KE = ½ × m × v2

<<KE formula.ppt>>

Image001

Image002

Image003

Image004

KE formula.ppt Download this file

4.11


Begin forwarded message:

From: Matt Baker <maba@patana.ac.th>
Subject: 4.11
Date: September 7, 2011 2:34:47 PM GMT+07:00
To: Andrew Koomenjoe Nyaga <anny14@patana.ac.th>, Arisara Amrapala <aram14@patana.ac.th>, Boondaree Chang <boch14@patana.ac.th>, Chrischawit Chomsoonthorn <chcm14@patana.ac.th>, Christopher Lo <chlo14@patana.ac.th>, Connor Blair Sailes <cosa14@patana.ac.th>, Frazer Allen Briggs <frbr14@patana.ac.th>, Huei-Yu Daniel Lo <hulo14@patana.ac.th>, Isabel Catriona McDonald <ismd14@patana.ac.th>, Kavin Supatravanij <kasu14@patana.ac.th>, Luke Michael Gebbie <luge14@patana.ac.th>, Lydia Anna Foley <lyfo14@patana.ac.th>, Morrakot Sae-Huang <mosa14@patana.ac.th>, Puchawin Borirackujarean <pubo14@patana.ac.th>, Qing Tang <qita14@patana.ac.th>, Sanyam Grewal <sagr14@patana.ac.th>, Sebastien Grimm <segr14@patana.ac.th>, Soo Hyun Lee <sole14@patana.ac.th>, Tatiksha Singh <tasi14@patana.ac.th>, Usa Wongsanguan <uswo14@patana.ac.th>, Yanida Areekul <yaar14@patana.ac.th>, Yi-Lin Huang <yihu14@patana.ac.th>

4.11
10 June 2011
11:52
·         
4.11 recall and use the relationship:

   gravitational potential energy = mass × g × height

                              GPE = m × g × h

 

 

<<4B2 highest to lowest GPE.swf>>
<<4B2 GPE calculation of car moving downhill.swf>>
<<GPE formula.ppt>>

Image001

Image002

Image003

Image004

GPE formula.ppt Download this file

4B2 highest to lowest GPE.swf Download this file

4B2 GPE calculation of car moving downhill.swf Download this file

4.11


Begin forwarded message:

From: Matt Baker <maba@patana.ac.th>
Subject: 4.11
Date: September 7, 2011 2:34:47 PM GMT+07:00
To: Andrew Koomenjoe Nyaga <anny14@patana.ac.th>, Arisara Amrapala <aram14@patana.ac.th>, Boondaree Chang <boch14@patana.ac.th>, Chrischawit Chomsoonthorn <chcm14@patana.ac.th>, Christopher Lo <chlo14@patana.ac.th>, Connor Blair Sailes <cosa14@patana.ac.th>, Frazer Allen Briggs <frbr14@patana.ac.th>, Huei-Yu Daniel Lo <hulo14@patana.ac.th>, Isabel Catriona McDonald <ismd14@patana.ac.th>, Kavin Supatravanij <kasu14@patana.ac.th>, Luke Michael Gebbie <luge14@patana.ac.th>, Lydia Anna Foley <lyfo14@patana.ac.th>, Morrakot Sae-Huang <mosa14@patana.ac.th>, Puchawin Borirackujarean <pubo14@patana.ac.th>, Qing Tang <qita14@patana.ac.th>, Sanyam Grewal <sagr14@patana.ac.th>, Sebastien Grimm <segr14@patana.ac.th>, Soo Hyun Lee <sole14@patana.ac.th>, Tatiksha Singh <tasi14@patana.ac.th>, Usa Wongsanguan <uswo14@patana.ac.th>, Yanida Areekul <yaar14@patana.ac.th>, Yi-Lin Huang <yihu14@patana.ac.th>

4.11
10 June 2011
11:52
·         
4.11 recall and use the relationship:

   gravitational potential energy = mass × g × height

                              GPE = m × g × h

 

 

<<4B2 highest to lowest GPE.swf>>
<<4B2 GPE calculation of car moving downhill.swf>>
<<GPE formula.ppt>>

Image001

Image002

Image003

Image004

GPE formula.ppt Download this file

4B2 highest to lowest GPE.swf Download this file

4B2 GPE calculation of car moving downhill.swf Download this file